Center for Chips with Heterogeneously Integrated Photonics (CHIPS)

Ming Wu

Electrical and Computer Engineering Dept. UCLA

Contact information

Sadik Esener

phone: (858) 534-2732; email: sesener@ucsd.edu http://soliton.ucsd.edu

November 28, 2001, Washington D.C. OIDA Review

Center for Chips with Heterogeneously Integrated Photonics (CHIPS)

PI: Sadik Esener; MDA 972-00-1-0019 start: 7-1-2000

Mission:

- → To innovate photonic components beyond classical limits by
 - · miniaturization,
 - · multidisciplinary research,
 - investigation of new applications and close collaboration with industrial partners
- → To prepare and train future OE workforce for the rapidly growing Photonics Industry

Core Areas:

Develop core photonic technologies including

- Nano, Meso and Near field optics
- PBG, and QD lasers
- Tunable lasers, detectors, and SOA arrays
- Optical µ-beams & fluidics
- NOEMS

for enhancing integration at the device, interconnect, and chip levels for **biochip and photonic switching** applications

CHIPS ORGANIZATION

Strong Interactions with California Institutes for Science, Innovation, and Tech Transfer

The California NanoSystems Institute

The California Institute
for Telecommunications
and Information Technology

The California Institute for Telecommunications and Information Technology (CAL-IT2 UCSD-UCI)

3x\$100M over 5 years (\$100M from State)

\$140M raised from private sector

\$100M from Federal Funding

Strong emphasis on Photonics

The California NanoSystems Institute UCSB-UCLA

3X\$100M over 5years

Strong Emphasis on Nanotechnology

CHIPS OBJECTIVES & APPROACH

CHIPS OBJECTIVES

Y1&2 Promote Inventions

Using scaling laws Interdisciplinary research

Y3&4 Transition Innovations

Teaming up with Industry New Start-ups

CHIPS APPROACH

Link

- ·Basic science
- Engineering
- Corporate R&D
- Financing

CHIPS WORK AREAS

Core Technology Development Thrust

Physics and modeling of nanophotonics Materials / Microfabrication / HI Light sources and detectors

Interconnect Components

Biophotonic Chip Thrust

Microbeam controlled fluidic switch and Pick and Place Nanophotonics based bio chemical sensors

MEMS microspectrometer arrays

Spectroscopic, confocal and near field two-photon μ-scopes System Integration

INDUSTRY SUPPORT

Photonic Switching

PBG Switches

 μ -resonator filters, switches and λ -converters Polymeric integration for ultra flat optical packages System integration on InP

CHIPS Nanophotonics Activities

Model Photonic Crystal and High Q Resonator Devices

Integrate QD and Resonator Technology

Investigate Fundamental Limits of Nanophotonics Technology

Invent and Demonstrate Nanophotonic Devices with Increased Functionality

Apply Nanophotonic Devices to Biophotonics and Switching

CHIPS Vertical Cavity Device Activities

Importance/Relevance

- Enable new optical networking architectures
- Relevant to datacom & telecom for military & commercial F.O. networks
- Industrial participation by Agilent and Honeywell, leveraged by state
- Government participation by SPAWAR and ARO/UCSD

Activities

WDM VCSEL Arrays

- Wafer-fused
- Lattice-matched AsSb*

VC-SOAs

- ·Wafer-fused, optically pumped
- Lattice-matched bipolar cascade (tunable)**

•VC Wavelength-Converting Photon Number Amplifier

- Lattice-matched bipolar cascade (tunable)
- •Integration with APDs

Why Biophotonics?

- On chip Bio-sorters, Bio-sensors, and PCR are key in bio-warfare
 - Photonic arrays provide compact, high throughput solutions
- Healtcare products may dominate the economy of the XXI century
 - Role of Photonics as an enabling technology in this area needs to be investigated
- Biochips need to be disposable and systems must be low cost
 - Biophotonics may be the necessary push to develop mass production technologies for photonic components and systems
- Biologically inspired materials and devices may offer attractive solutions for future photonic components and their integration

CHIPS Biophotonic Activities

Optical manipulation of biological samples

VCSEL driven arrays of light tweezers

Optical fluidic switching

Particle switching via VCSEL driven light forces

Optically switched hydrophobic/hydrophilic fluidic channels

Optical sorting by size and dielectric properties

Optophoresis- (Transferred to Genoptix Inc.)

Optical fluidic pumps

Optically activated polymers

Optical Imaging

4-D and near field microscopy

Optical Sensing

Nanophotonic bio-sensors

Biologically inspired photonic devices Self-aligned/assembled devices

Biological molecules as tools for heterogeneous integration
Use of electrophoretic forces for actuation

CHIPS: From the micro to the nano-world

CHIPS: From the micro to the nano-world

Paving the way from the micro to the nano-world